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It is well known that vortex sheets are diffused by viscosity. For a plane sheet this 
diffusion is described by a linear diffusion equation. Here we consider a rolled vortex 
sheet, and show that the viscous diffusion of the vorticity concentrated a t  the turns 
of the sheet, when they are very closely spaced, can also be described by a linear 
equation, in appropriately transformed variables. 

1. Introduction 
A double-scale technique was successfullyapplied by Guiraud & Zeytounian (1977, 

which we shall refer to hereafter as GZ) in order to describe analytically the asymptotic 
structure of the core of a rolled vortex sheet in an inviscid, incompressible, irrotational 
flow. In  the present note, we use a slight extension of this technique to derive a linear 
equation which describes, quantitatively, the laminar viscous diffusion of the closely 
spaced turns of the highly rolled part of the sheet. 

We start with the Navier-Stokes equations for incompressible flow in dimensionless 
form. Let u be the dimensionless velocity, p the dimensionless pressure and t and x 
the dimensionless time and space variables. Let R = U D / v  be the Reynolds number, 
where D is a length scale of the order of the diameter of the core, U is a velocity scale 
of the order of the azimuthal component of the velocity, and v is the kinematic viscosity. 
The azimuthal component is the component of velocity which is normal to the 
meridian plane in local cylindrical co-ordinates with respect to the axis of the core. 
t ,  x and u are of course non-dimensionalized with respect to DU-1, D and U .  

The technique used in GZ was to regard u and p as functions of t and x, considered 
as slow variables, and also of another variable x, a fast one, which was itself a function 
o f t  and x. The role of the fast variable x was to describe the rapid variation of u 
and p transverse to the sheet. It was found, as expected, that this rapid variation 
had a saw-tooth structure. The corresponding discontinuities were found to be 
associated with the vorticity concentrated a t  the turns of the sheet. The saw-tooth 
signature was normalized by prescribing that x changes by 271 from one discontinuity 
to the next, i.e. between two consecutive turns of the sheet. x was of course a multi- 
valued function of x. 

Let us denote by e a length scale which is of the order of the distance between two 
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consecutive turns of the sheet, in the main part of the core. We define a closeness 
parameter 

and a viscous parameter 
C = e /D 

7 = C2R. 

We assume that C < 1 and R 9 1 in such a way that 7 = O(1) or smaller. Within the 
core we search for an asymptotic representation of the flow 

(3)  

(4) 

i u = u*(t,x; x; c; 7) = u,*+cu;+ ..., 
p = p*(t, x; x; c; 7) = p,* + cp;  + . .., 

SZ = SZ*(t,x;x;C;r) = SZ,*+cSZ;+ ..., 

where G? is the vorticity. We observe that from the definition of x we may write 

axiat = c+, vx = c-lk, 

where w and Ikl are O(1).  Equations (4) and the hypothesis that C < 1 make it clear 
that x is a fast variable. 

The main result of the calculation presented below is twofold. On the one hand 
u,* and p,*, which are found to be independent of x, are also found to be solutions of 
the inviscid equations. On the other hand it is shown that the first approximation 
a,* to the vorticity may be expressed as 

a,* = 2n9(T, x) V A u,*, ( 5 )  

where 9 is a solution of the heat equation 

a@/aT = az+/ay. (6) 

Here T is a pseudo-time and is defined by 
r t  

where the integration is effected along the trajectories of the velocity field ug and k, 
stands for the value of k at t ,  along such a trajectory. 

Of course, on physical grounds such a result is not unexpected. As was mentioned 
to the authors by a referee, this result was obtained on intuitive grounds by Moore 
& Saffman (1973) .  Nevertheless, it does not seem likely that (6), complemented by 
(7) ,  could be derived in a formal way as simply as is done in the present work without 
applying the double-scale technique which is used here. 

A comment may be helpful for the reader: the vorticity concentrated on the rolled 
sheet in the inviscid model is weak, its intensity being O(C), as shown in GZ, and this 
is the main reason why (6) is linear. 

2. Formal derivation 
We substitute (3) into the Navier-Stokes equations, observe that, for example, 

au all* au* _ -  - -+C-'o,-- 
at at ax 
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and equate like powers of C to zero. In  fact, besides the Navier-Stokes equations, it 
proves convenient to use the equation defining the vorticity 51, namely 

a* = v A U* + C-lk A (au*/ax). (9) 

Through a straightforward argument, using the fact, readily proved, that aS2,*/ax 
cannot be identically zero, we get to leading order 

@*/ax = ap,*/ax = + k . h* = 0. (10) 

Considering then the next order, we find that there are terms secular with respect 
to x in U: etc. These secular terms must be rejected, and in order to achieve this, 
we require that u:, etc. be periodic functions of x with period 2 ~ .  The choice of 2n 
for the period is just one of normalization. Dealing with periodic functions of the 
variable x, it proves useful to set 

so t h a t p  is the average off * over one period, while the average off* is zero. Writing 
down the equations to one order higher to the one leading to (10) and averaging 
them with respect to x, we obtain the conditions for elimination of the secular terms 
in u;" etc.: 

v.u,* = 0, (12a) 

( 1 2 b )  

~ + ( $ . V ) - @ - ( s z , * . V ) u ; :  = 0, (12c) 

51: = v A U , * .  ( 1 2 4  

U: = - lkl-'k/\ V,*, aV,*/ax = a,*. (13) 

a&*/at + (UZ . V) u,* + vp,* = 0, 
- 

- 

We then find that, for example, 

Here we should mention that (12c) is derived from the vorticity equation and 
emphasize that the viscous term has disappeared as a consequence of the averaging 
process. Returning to the vorticity equation expanded to the order which leads to 
(12c) and subtracting the latter from the former, we get 

-k . (V~u,*) /k l -~kA@ =&,*/at 

+(u$ . V ) a , * - ( @  .V)~ ,* -11-~1k1~a~~Z,* /ax~ .  (14) 

Now we observe that (14) has been derived under the assumption 11 = O( 1))  in order 
to describe the situation when the rolled sheet has been diffused by viscosity to the 
extent that the thickness of each sheet is becoming of the order of the spacing between 
the turns. But one may convince oneself that the expansion with respect to C is a 
time-like expansion corresponding to the process of following a particle as it progresses 
towards the core of the rolled sheet, while R remains of fixed order of magnitude. As a 
consequence, letting y+co corresponds to enforcing an initial condition for the dif- 
fusion process. In  the limit we must recover the inviscid theory considered in GZ; 
then for almost all x we have a,* = - e f r o m  irrotationality, except in vanishingly 
thin viscous mixing layers. Under such conditions, (12c) shows that the right-hand 
side of (14) must be zero. As a consequence we conclude that in the limit 7 --f 03 we 
must have 

k . ( V A U , * )  = 0. (15) 
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Now, if we consider that  the equations defining ut and p t  do not depend on 7, we 
conclude that (15) must hold whatever the value of 7, and this leads to the following 
equation: 

aC! , * /a t+(~ , *  .V)C!,*-(C!,* .V)U,* = ~ - l ~ k ~ z ~ z f i , * / i ? x z .  (16) 

The last step in the derivation of our main result is to go from (16) to (5) and (6) 
complemented by (7).  The trick which achieves this goal in the simplest way is to 
use a Lagrangian description of the flow associated with ut. We define the tensor F by 

dx = F.da+u,*dt ,  x = X ( t , a ) ,  (17) 

where a is a Lagrangian variable, and denote the inverse of F by G.  Then standard 
arguments lead to Cauchy’s equation for the vorticity in a perfect fluid, which can 
he used to derive from (16) the equation? 

a(G . C?ZL)/aT - a2(G . C ! ~ L ) / a ~ z  = 0,  (18) 

where the pseudo-time T is defined according to 

which is nothing other than (7).  

vorticity relation 

which shows that the formula 

We now make a final reduction of ( 1  8). This is achieved through use of Cauchy’s 

a{G . (V A u,*)}/at = 0, (20) 

a,* = 2n+(T ,x )V~u,*  (21) 

agrees with (16) provided that 
That (21)is thepropersolutionof (16), taking intoaccount (12d), isseenbyobserving 

that 7 + m is equivalent to T .+ 0 and that for 7 -+ co we get (21), where + is an infinite 
sum of Dirac delta functions concentrated on x = (2K+ l )n ,  K running through 
positive and negative integers. 

satisfies the heat equation (6). 

3. Conclusion 
We have shown that the diffusion of a rolled vortex sheet may be described by the 

heat equation. We need only to define properly the variable x transverse to the sheets 
and to use a proper pseudo-time T. Then the process of diffusion is a universal one, 
and throughout this process the averaged flow u,* remains inviscid and rotational. 
In  order to obtain some effect of viscosity on the averaged flow we must go to very 
high values of T ,  which means that we must go very deep into the rolled sheet towards 
the axis of the core. We refer to Stewartson & Hall (1963) for the description of a 
continuous core flow diffused by viscosity. 

t The superscript L means that we use as independent variables t and a instead oft and x, as 
well as 2. 
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